Letters 1593

European Tournal of Cancer Vol. 30A, No. 10, pp. 1593-1594, 1994 Copyright (C) 1994 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0959-8049/94 \$7.00 + 0.00

0959-8049(94)00250-9

Mitoxantrone and 5-Fluorouracil Modulated by the Pure (6S) Stereoisomer of Leucovorin as Second-line Chemotherapy for **Advanced Breast Cancer**

P. Pronzato, G. Bertelli, F. Vaira, A. Vigani and P. Losardo

GIVEN THE long natural history of advanced breast cancer, second-line chemotherapy is frequently necessary in patients. The combination of mitoxantrone, leucovorin and 5-fluorouracil has been tested in several studies with good results [1-6]. We report the results obtained with this regimen, modulated by leucovorin in the form of (6S)-5-CHO-FH₄, its active levorotative stereoisomer, in a series of patients resistant to the classic anthracycline-based combination FEC (5-fluorouracil, epidoxorubicin, cyclophosphamide).

To be eligible for the trial, patients were required to fulfil the following criteria: histologically or cytologically documented advanced breast cancer, with measurable or evaluable lesions, previously treated with FEC [5-fluorouracil 600 mg/m², epidoxorubicin 60 mg/m², cyclophosphamide 600 mg/m², all intravenous (i.v.) on day 1 every 3 weeks]; recovery from previous chemotherapy, surgery and/or radiotherapy, with WBC count ≥3500/mm³ and platelet count ≥100000/mm³; performance status (PS) 0-2 (ECOG scale); no brain metastases.

Chemotherapy was administered on an out-patient basis every 3 weeks for a maximum of six cycles. Mitoxantrone (12 mg/m²) was administered on day 1, 5-fluorouracil (350 mg/m²) and (6S)-5-CHO-FH₄ (150 mg/m²) were given as i.v. bolus on days 1, 2 and 3. The cycle was delayed until marrow recovery if WBC count was <3500/mm³ or platelet count was <100000/mm³. Responses and toxicity were categorised according to WHO criteria [7].

24 patients were entered into the trial. Median age of patients was 53 years (range 41-75): 10 patients were premenopausal and 14 postmenopausal. The dominant sites of metastases were the bones in 14 (58.3%), viscera in 8 (33.3%) and soft tissues in 2 (8.3%). Previous treatments included FEC in all patients, as required by admission criteria; 13 patients (54.2%) had also received adjuvant CMF (cyclophosphamide, methotrexate and 5-fluorouracil), 17 (70.8%) had been treated with hormone therapy as adjuvant therapy (15 patients) or for the treatment of metastases (2 patients).

A total of 85 cycles of chemotherapy were administered.

Correspondence to G. Bertelli at the Istituto Nazionale per la Ricerca sul

Table 1. Toxicity

	No. of patients with WHO grade:			
	I (%)	II (%)	III (%)	IV (%)
Alopecia	6 (25.0)	7 (29.2)	1 (4.2)	0
Mucositis	3 (12.5)	4 (16.7)	0	0
Diarrhoea	3 (12.5)	4 (16.7)	2 (8.3)	0
Nausea and vomiting	7 (29.2)	2 (8.3)	0	0
Myelosuppression				
Neutropenia	5 (20.8)	6 (25.0)	3 (12.5)	0
Thrombocytopenia	1 (4.2)	1 (4.2)	0	0

Thirty-two cycles (37.6%) were delayed because of leucopenia, and seven (8.2%) were administered with a 25% dose reduction in 3 patients with persistent fever and leucopenia.

No complete response was observed; 7 patients (29.2%) showed a partial response with a median duration of 12 months, 10 (41.7%) had stable disease (with minor responses being observed in 3 patients) and 7 (29.2%) progressed. Table 1 shows toxicity results.

Published papers investigating the application of a combination of mitoxantrone, 5-fluorouracil and leucovorin in pretreated patients with advanced breast cancer have been recently reviewed [8]. Response rates ranged from 29 to 65%, with acceptable toxicity: obviously, higher response rates may be expected in chemotherapy-naive patients [5], but when used as second-line treatment, the regimen has also proved consistently active. In our own study, the role of this combination in pretreated patients has been further investigated by selecting a highly homogeneous group of patients, all of whom had previously received the same anthracycline-containing regimen FEC. Moreover, we employed the newly available, pure (6S)stereoisomer of leucovorin, instead of the racemic (6R,S) natural form. Only the levorotatory (6S)-5-CHO-FH₄ is transformed into active folate cofactors and a higher activity may be expected theoretically, even if optimal doses and schedules of the 5fluorouracil/folinate combination are not vet fully defined [9]. This combination appeared safe, easily administrable in an outpatient setting, and moderately active. However, many other regimens show similar activity in metastatic breast cancer: randomised comparative studies, analysing the results in terms of response rate, survival and quality of life, would be of interest.

Cancro, Viale Benedetto XV, 10, 16132 Genova, Italy.

P. Pronzato, F. Vaira, A. Vigani and P. Losardo are at the Unità Operativa di Oncologia Medica, Ospedale S. Andrea, La Spezia, Italy. Revised 6 June 1994; accepted 24 June 1994.

^{1.} Hainsworth JD, Andrews MB, Johnson DH, Greco FA. Mitoxantrone, fluorouracil, and high-dose leucovorin: an effective, welltolerated regimen for metastatic breast cancer. J Clin Oncol 1991, 9, 1731-1736.

^{2.} Jones SE, Mennel RG, Brooks B, et al. Phase II study of mitoxantrone, leucovorin, and infusional fluorouracil for treatment of metastatic breast cancer. J Clin Oncol 1991, 9, 1736-1739.

Swain S, Honig S, Johnson K, et al. A mitoxantrone, 5-fluorouracil and high-dose leucovorin regimen as treatment for patients with metastatic breast cancer. Proc ASCO 1991, 10, 54 (abstract).

Despax R, Gratet A. Combination chemotherapy of metastatic breast cancer with high dose leucovorin (L)-5FU (F) and mitoxantrone (M): pilot study with escalating doses. Proc ASCO 1991, 10, 63

^{5.} Carmo-Pereira J, Oliveira Costa F, Henriques E. Mitoxantrone, folinic acid, 5-fluorouracil and prednisone as first-line chemotherapy for advanced breast carcinoma. A phase II study. Eur J Cancer 1993, **29A**, 1814–1816.

Wils JA. Mitoxantrone, leucovorin and high-dose infusional 5-

1594 Letters

fluorouracil: an effective and well-tolerated regimen for the treatment of advanced breast cancer. Eur J Cancer 1993, 29A, 2106–2108.

- Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981, 47, 207–214.
- Hainsworth JD. The use of mitoxantrone, 5-fluorouracil and high dose leucovorin in the treatment of advanced breast cancer. Ann Oncol 1993, 4 (suppl. 2), 37-40.
- Machover D, Grison X, Goldschmidt E, et al. Fluorouracil combined with the pure (6S)-stereoisomer of folinic acid in high doses for treatment of patients with advanced colorectal carcinoma: a phase I-II study. J Natl Cancer Inst 1992, 84, 321-327.

Acknowledgements—The authors wish to thank ASTRO (Associazione Tirrenica Ricerca Oncologica).

European Journal of Cancer Vol. 30A, No. 10, p. 1594, 1994. Copyright © 1994 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0959_804994 \$7.00 + 0.00

A Rapidly Progressing Leiomyosarcoma Expressing Drugresistance Markers Failed to Respond to Cyclosporin A-associated Chemotherapy

S. Oudard, S. Chevillard, F. Lokiec, T. Dorval, M.F. Poupon and P. Pouillart

PROGNOSIS OF metastatic sarcoma remains poor and overall survival rates at 2 years range from 20 to 40%. Tumour cells resist cytotoxic drugs by means of multiple mechanisms, and this resistance is thought to be a major cause of therapeutic failure. Multidrug resistance (MDR) due to an increased level of P-glycoprotein (Pgp) has been found in approximately 30% of human sarcomas [1]. Cyclosporin A (CsA) is able to block Pgprelated resistance in vitro and in vivo [2]. However, other mechanisms of resistance are also involved in sarcomas. We report on a woman presenting with a rapidly progressing metastatic leiomyosarcoma that expressed several resistance markers, detected by reverse transcriptase polymerase chain reaction (RT-PCR), and our attempt to reverse drug resistance by adding CsA to the chemotherapeutic regimen [3].

A 42-year-old Algerian woman was admitted to the Institut Curie Hospital in October, 1992, with the diagnosis of unknown primary leiomyosarcoma with breast and pulmonary metastases. Upon admission, she was jaundiced due to liver metastases. Insertion of a T tube resulted in a 3-week delay in the onset of chemotherapy during which bladder, skin and contralateral breast metastases appeared. A skin metastasis was biopsied before each cycle of chemotherapy and subjected to semi-quantitative RT-PCR, using β_2 -microglobulin as the internal

Correspondence to S. Oudart.

Table 1. Drug-resistance markers detected by RT-PCR

mRNA	At diagnosis	Before second cycle	Before third cycle	
MDR1	0.19*	0.32	0.43	
MRP	0.022	0.018	0.022	
Τορο ΙΙα	0.88	0.95	0.98	
GST π	1.3	1.1	1.1	

*Values represent the ratios of yield of the amplified target gene/yield of the amplified internal standard, β_2 -microglobulin.

standard to determine the levels of Pgp, multidrug-related protein (MRP), topoisomerase II α (Topo II α) and gluthatione-S-transferase (GST π). Because of MDR1 mRNA overexpression at the time of diagnosis, we decided to give three cycles of vincristine, deticene, ifosfamide and doxorubicin associated with CsA (5 mg/kg loading dose followed by 15 mg/kg/day continuously infused for 48 h during doxorubicin infusion). A pharmacokinetic study of CsA levels (0, 15 and 20 h) was performed for each cycle and showed that an effective reversing level (mean > 2 μ g/ml) could be obtained in the serum, mean 3.8 μ g/ml (range, 2.4–5.1 μ g/ml), while the CsA content in the skin metastasis (cutaneous punctures at 0, 15 and 20 h) was low, mean 30.5 ng/ml (range, 25–36 ng/ml). Despite three cycles of this treatment, her disease continued to progress.

The addition of CsA to this chemotherapeutic regimen did not reverse the MDR phenotype (Table 1). Indeed, the MDR1 mRNA transcript continued to increase after two cycles (the ratio $mdr1/\beta_2$ was similar to that obtained for a 5-times doxorubicin resistant breast cell line, MCF7 taken as a reference). Despite a high serum CsA level, the tissue CsA level remained low, which could by itself explain the lack of effect on MDR. Before considering a 'reverser' as being ineffective, it must first be determined, as we did, that it enters the target cells. Furthermore, this inefficacy could also be due to the high level of $GST\pi$. However, the resistance of this rapidly progressing tumour cannot be attributed to the MRP gene, which encodes a 190kDa membrane non-Pgp, that did not pass the threshold of positivity nor to the relative stability of the topo IIα-mRNA transcript [4]. The intrinsic and acquired multifactorial resistance of metastatic sarcoma may explain the inability to halt the progression of this patient's disease.

S. Oudart, T. Dorval and P. Pouillart are at the Department of Oncology and S. Chevillard and M.F. Poupon are at the Department of Biology, Institut Curie, 26, Rue d'Ulm, 75231 Paris cedex 05; and F. Lokiec is at the Department of Pharmacology, Centre René Huguenin, 35, Rue Dailly, 92210 Saint-Cloud, France.

Received 10 May 1994; accepted 6 June 1994.

Gerlach JH, Bel DR, Karakousis C, et al. P-glycoprotein in human sacroma: evidence for multidrug resistance. J Clin Oncol 1987, 5, 1452-1460.

Yahanda AM, Adler KM, Fischer GA, et al. Phase I trial of etoposide with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 1992, 10, 1624-1634.

Noonan KE, Beck C, Holzmayer TA, et al. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci USA 1990, 87, 7160-7164.

Krishnamachary N, Center MS. The MRP gene associated with a non P-glycoprotein multidrug resistance encodes a 190-kDa membrane bound glycoprotein. Cancer Res 1993, 53, 3658-3661.